Chapters 1 and 2

Quantitative Analysis:
Qualitative Analysis:
An analytical chemist does both of these.

Rule of thumb for reading volume with gradations

Thermometer:

Ruler:

Graduated Cylinder:

Some important tools you'll use in quant lab
Weighing Bottle:

Ribbed watch glasses, oven mitt
Dessicator:

Micro Spatula:

Scooping spatula:

Dessicant:

Measuring Mass

Analytical Balance

Weighing by difference:

Measured in g \qquad Measured in mg \qquad
To calibrate:

- Check the leveling bubble before taring.

Top Loading Balance

Measuring Volume

Glassware: Why glass?

TD vs. TC

To calibrate a piece of glassware or other measurement instrument means

No piece of glassware is perfect, but

Pipet

To rinse:

Class A Transfer pipet

In lab you will use your 10-mL pipet to transfer water into a small beaker and weigh it on the analytical balance.

Sample data: Volume:
Mass:

What is the true volume of the pipet, based on the mass measurement? To answer this you'll need to convert mass to volume (p. 48). That depends on the temperature. Let's use the value for $20^{\circ} \mathrm{C}$:

Is this within the accepted tolerance (p. 44) for a Class A 10-mL pipet?

The "real rule" of significant figures:

This data is from page 44 of your book:

Nominal volume of pipet (mL)	Tolerance (mL)	Volume of pipet with correct significant figures (mL)
1		
5		
10		
25		
100		

Mohr (measuring) Pipet:

Don't blow the liquid out with your pipet bulb. Let gravity do its job, then touch the tip of the pipet into your container.

Micropipets:

The \% accuracy for a $1000 \mu \mathrm{~L}$ micropipet measuring $1000 \mu \mathrm{~L}$ is \qquad .

When it is measuring $100 \mu \mathrm{~L}$, it is \qquad .

Buret

To rinse:

Check stopcock:

- Be consistent in your readings
- Dispense any air bubble before taking your first reading
- Use your water bottle at the end of a titration

Reading a buret:
What is the tolerance for a $50-\mathrm{mL}$ buret? (p. 41)
So every reading should have \qquad digits after the decimal. Example:

We use burets to do \qquad .

Standardization titration: For example,
We are going to use a solution of \qquad to titrate our unknown, which contains \qquad . So before we use the HCl solution, we need to
\qquad it. To do this, we will titrate a "known": \qquad
\qquad .

Example: A sample of 0.1855 g sodium carbonate (99.5% pure) is titrated with 36.29 mL of the HCl solution. What is $[\mathrm{HCl}]$?

We use the \qquad to determine the in the unknown sample.

Volumetric Flask

- Don't ever put a stirring bar in a volumetric flask. Never ever. Why?

Then how do you mix something in a volumetric flask?

We use volumetric flasks to make solutions of known molarity. Again, using Class A flasks with small tolerances gives us more significant figures in our molarity, which is more precise. This table comes from p. 43 of your book.

Nominal volume of volumetric flask (mL)	Tolerance (mL)	Volume of volumetric flask with correct significant figures (mL)
10		
50		
100		
250		
1000		

How many grams of copper (II) sulfate pentahydrtge should be dissolved in a $250-\mathrm{mL}$ volumetric flask to make a solution containing $8.00 \mathrm{mM} \mathrm{Cu}^{2+}$?

What is the weight \% of copper (II) sulfate in this solution? Assume the density of water $=1.00 \mathrm{~g} / \mathrm{mL}$.

What is $8.00 \mathrm{mM} \mathrm{Cu}^{2+}$ in ppm ?

If you use a $10-\mathrm{mL}$ pipet to dilute 0.1201 M HCl in a $250-\mathrm{mL}$ volumetric flask, how would you do this? What would be the molarity of the dilution?

Homework: Chapter 1 \# 8, 9, 11, 12, 14, 15, 18, 20
Chapter 2 \# 10, 11, 12

